
Page 1 of 8

INFORMATION SYSTEM ENGINEERING

2.1 WHAT IS INFORMATION SYSTEM ENGINEERING
WHAT IS INFORMATION SYSTEMS ENGINEERING? Information systems

are computer-based infrastructures, organizations, personnel, and components that

collect, process, store, transmit, display, disseminate, and act on information.1

information systems generally provide computer-based assistance to people

engaging their environment where engagements and environments are often too

complex and dynamic to be handled manually. Complex, dynamic engagements

and environments require people to analyze and draw conclusions from an

abstracted representation of the world, which enables them to make discrete

decisions to achieve a desired effect in the world commensurate with their roles,

tasks, and capabilities.

The abstraction is sometimes portrayed as a hierarchy known as the Data,

information, knowledge, and Wisdom paradigm. The definitions of the layers are

not precise, but the layers give a sense that data are processed to higher levels of

abstraction, enabling people to make judgments about a situation and to follow a

course of action. The widths of the elements of the hierarchy represent the relative

volumes of data stored at each level. Data are the smallest symbolic units that

describe measured or estimated phenomena. For example, sensors produce large

volumes of data, but very little is understood by humans. Information here is used

in a more restrictive sense than when we refer to information systems. In the DikW

paradigm, information is a more abstract understanding of the data derived by

fusing data; it is typically the lowest layer where the symbolic units are

interpretable by humans. Knowledge is belief about the information. In this layer,

symbols are sufficiently abstract to enable people to make decisions about and

interact with their environments.

Knowledge implies the combination of information with ancillary data and

discernment of historical patterns. Wisdom is knowledge combined with insights

and common sense. It is typically achieved by humans based on knowledge,

information, and data. Unlike other levels of the DikW hierarchy, wisdom is hard

to derive automatically from lower-level information representations. The

engineering of information systems is the application of formal methods of

analysis to create operational systems. information systems that incorporate mul-

tiple technologies and processes must be designed and developed according to

rigorous engineering standards to ensure that they support the requirements of their

respective application domains and that they operate rapidly, accurately, and

efficiently.

Page 2 of 8

Today, an exponentially increasing amount of data is available for processing and

analysis, the number of decisions that must be made based on analysis is growing,

the number of analysts that can make these decisions is decreasing, the time frame

to make the decisions is becoming smaller, the size of information systems that

support decision systems is increasing, and information systems are becoming

more vulnerable to attack. Military information systems must deal with denial and

deceit, deliberate enemy actions to keep data from being collected or to distort the

user’s perception of the world to the point at which the user takes actions advan-

tageous to the enemy. As the number of people needing to interact with

information increases, the complexity of the corresponding information systems

also increases Data and information must be fused and synthesized so that fewer

users can interact with a smaller amount of data at higher levels of abstraction.

Information systems must present clear and reliable representations of their

environments.

Auto- mated decision systems will allow more rapid fusion of data from

heterogeneous sources as well as apply polynomial-time approximations to

exponential decision problems. Service- and agent-based technologies will enable

developers to create increasingly complex systems by rapidly discovering and

incorporating the capabilities of existing systems. Agile software engineering

methodologies will promote the creation of more robust and flexible systems.

Cognitive engineering systems will apply principles of analyzing user tasks and

roles to streamlining user processes and to focusing users on the right level of

abstraction for their task. Finally, information assurance (iA) methods will increase

the integrity of information systems and reduce their vulnerabilities.

2.2 Intelligent Use of Data, Information, and Knowledge As the volume and

heterogeneity of data play an increasingly prominent role in information systems,

and as they continue to proliferate among many disparate organizations, advanced

intelligent techniques must be exploited to simplify access to the data, accelerate

data integration, and extract higher-level meaning from their content.

Extracting higher-level meaning enables soft- ware to derive higher-level

abstractions represented in the DikW hierarchy. The ApL s&T vision is to develop

and use those techniques that will make access to data sources faster, easier, and

less costly. Data sources and their respective data management systems store and

maintain information relevant to information systems. Data source representations

generally fall into three categories: (1) structured (e.g., relational databases), (2)

semi-structured (e.g., XmL documents), and (3) unstructured (e.g., text

documents). We envision that information systems incorporating new or legacy

Page 3 of 8

data sources of all three categories will use tools that provide simplified access to

them and enable them to be integrated with other data sources and applications.

Applications and users requiring access to data sources often need detailed

knowledge of the data source models, as well as the meanings and intent of the

data terms, to formulate reasonable queries. A greater amount of knowledge is

required to formulate queries to and integrate the results of heterogeneous data

sources. Conceptual models and ontologies, which capture the structure and

semantics of data sources, will play an increasingly important role in automated

software that helps users gain access to these sources. Conceptual data models are

machine-readable representations that describe the design of data sources,

including the data represented, data groupings, and inter-data relation- ships.

Ontologies are machine-readable representations that describe the semantics of the

data sources, including the intended meaning of terms and relationships as well as

their relationships to concepts outside the realm of what is represented in the data

sources. Ontologies may also play a key role in integrating unstructured and

structured data sources. Using reasoning techniques over the conceptual models

and ontologies, software tools will automatically formulate queries to one or more

data sources, facilitate the process of integrating heterogeneous data sources, and

enable reasoning about the data to provide higher- level abstractions that can be

inferred from the data.

Through the use of knowledge representation–supported capabilities, automated

(or semi-automated) tools transform data to information to knowledge. Automated

query tools that exploit conceptual schemas will enable simplified aggregation of

information from individual data sources. Semi- autonomous data source

integration tools will use ontologies to integrate information from heterogeneous

data sources. Decision systems supported by decision models will enable

information to be abstracted into knowledge. Applications that are supplied

knowledge input from decision systems will further refine that knowledge. Finally,

users interacting with applications that are supported by knowledge representation–

based tools will gain wisdom to understand and act upon their environment at the

abstraction level appropriate to their tasks.

Automated Decision Systems

While overlaying sensor data are important in certain circumstances, model-based

data fusion goes beyond sensor overlays by fusing information from multiple

sensors to provide a picture of targets that have been detected, identified, and

located with associated confidence. Furthermore, model-based data fusion provides

support for sensor management and management of attack assets. Traditionally,

Page 4 of 8

targeting for surface targets has been imagery centric and tracking has been point-

data centric. Model based data fusion integrates these two traditions. Tracking

methods usually assume that sensor data are first processed to perform signal

detection. The output of signal detection is observed point data in the form of

kinematic quantities such as position, range rate, and time difference of arrival.

Furthermore, signal detection provides signal-related data such as attributes and

features that support the association of newly observed data with targets.

Using techniques that include hypothesis testing and parameter and state

estimation methods from statistical decision theory, the point data and signal-

related data are then fused over time to provide target detection, data association,

iD, and location. Imagery, on the other hand, can be fused at the pixel or feature

level without first being processed to produce point data. Tracking and imagery

fusion can be integrated by taking the results of imagery processing in the form of

point- and signal-related data as input to tracking. Model based data fusion allows

the best use to be made of what is known in the form of prior knowledge.

Newly observed data are integrated with prior knowledge about targets, signatures,

and sensors to rapidly produce the best information and knowledge. Essentially,

this provides a continuous ipb (intelligence preparation of the battlefield) that

allows quick reaction to threats. The model-based methods draw explicitly on

mathematical models; examples include model-based automatic target recognition

and kinematic tracking methods. More generally, techniques such as template

matching and neural nets are also based on modeling assumptions. The techniques

that can make the most efficient use of prior knowledge will generally provide the

best performance when new observations are made.

Learning and Reasoning Tools Learning is a key element of many intelligent sys-

tems. It is a fundamental way to acquire and assimilate new information to increase

our knowledge of the world. Without learning, even the most seemingly intelligent

entity is doomed to repeat the same mistakes endlessly. Learning and reasoning

tools deal with unanticipated change in the environment and help to improve soft-

ware responses and behavior over time.

Learning recognizes that software engineers cannot possibly conceive of all

possibilities and plan for all contingencies. Learning tools identify new information

and knowledge rep- resented in the DikW hierarchy. The ApL vision is to

increasingly incorporate learning techniques that will address issues of scalability,

model selection, communication constraints when operating in a distributed

Page 5 of 8

environment, and effective incorporation of domain knowledge. Example learning

technologies are large-margin kernel machine and Bayesian belief networks (bbn).

Large-margin classifiers such as support vector machines are discriminative

methods that generalize well in sparse, high-dimensional settings. bbns are

probabilistic graphical models that provide a unified framework to manage

computational uncertainty consistently through the fusion of computer science and

probability theory. In particular, these graphical models enable robust

incorporation of domain knowledge in machine learning and automated reasoning,

which is difficult to achieve with traditional techniques based on statistical analysis

and signal processing.

Distributed Computing Web Services The demand for near-universal access to data

and applications will continue to grow throughout the next decade. The ApL vision

is to meet this need for future generations of command and control (c2) systems by

using a service-oriented architecture (soA), and, more specifically, by using a

distributed web services approach.

Although data transfer to and from legacy applications has been simplified over the

past decade by using technologies such as microsoft’s component object model

(com) and omg’s common object request broker Architecture (corbA), a more

extensible and scalable architecture is now available. Future global c2 systems are

likely to be based on web-service architectures like the net-centric enterprise

services (nces) approach used to develop the global information grid (gig; Fig. 4).

This approach allows groups of users, called communities of interest, to assemble

on-the-fly groupings of data sources, display surfaces, decision support tools, and

other services to meet their particular needs without having to bear the cost of

development each time. Communities could be pulled together for short periods of

time (e.g., for a single engagement) or for longer-standing timeframes (e.g., for

years or even decades).

The core enterprise services are tied together using standard web services

components, listed here with their responsibilities.

• Discovery services centralize services into a common registry and provide easy

publish/find functionality. currently handled via universal Description, Dis-

covery, and integration (uDDi).

 • Description services describe the public interface to a specific web service.

currently handled via the Web service Description Language (WsDL).

Page 6 of 8

• Messaging services encode messages in a common XmL format so that they can

be understood at either end. currently includes XmL remote procedure call (XmL-

rpc) and simple object Access proto- col (soAp).

 • Transport services transport messages among applications using protocols such

as hTTp, smTp, or FTp. currently, web services are described in common uDDi

registries by text that does not provide other applications with insight into the use

and intent of the services.

Agent-based Systems Agent-based systems are an emerging paradigm for

constructing large, complex systems, and the ApL s&T vision is to increase their

incorporation into large information systems. Traditionally, large-scale systems are

designed using the procedural approach achieved by functionally decomposing

tasks into progressively smaller components until their coding can be managed by

individual programming teams.

Shortcomings of the procedural approach include the rigidity of the design and the

fragility of the software. When requirements change, modifications may be needed

to the software throughout the entire system. The object-oriented paradigm

improves upon some of the problems of the procedural approach. The object-

oriented approach requires systems to be broken into smaller components or

objects that are abstractions of real world “things.” objects encapsulate state via

variables and methods that operate on state. Objects also support inheritance.

System modifications usually are made only to a few objects, leaving the rest of

the system intact.

The agent paradigm extends the object-oriented paradigm in many important

respects, enabling the creation of systems of multiple agents that are more flexible,

adaptive, and self-organizing.6 Agents are independent software components that

exhibit autonomy, intelligence, the power to delegate, the ability to communicate,

and sometimes mobility. Autonomy enables agents to act independently and with

purpose. They solve goal- oriented requests of users and other agents but are not

dependent on users and other agents for their operations. Intelligence enables

agents to learn about their environments, to reason over knowledge they have

acquired, and to make appropriate decisions. They may learn from their

interactions with users to improve themselves and are adaptive to uncertainty and

change. For example, agents may encapsulate automated decision systems and

automated data access systems to exhibit. Delegation enables agents to call upon

other agents to help solve problems, which does not preclude users from being “in

the loop.”

Page 7 of 8

Communication among agents is achieved through agent-communication

languages, which are typically goal-oriented statements and requests. Since agents

are autonomous and are created by authors from multiple domains, assistance from

ontologies is required to translate communications from the language of one

domain to another. Mobility enables agents to move among machines, gathering

information from each plat- form to achieve its goals.

Sophisticated agent systems can allow agents to discover, communicate with each

other, and self-organize to solve critical tasks. In a limited analogy, they can be

compared to groups of people who organize to solve problems. The people are

autonomous, have intelligence, and collaborate by using each other’s expertise to

achieve their goals. Agent systems are anticipated to play a more prominent role in

future ApL development. These systems will enable large communities of software

systems to form and exchange services and data more automatically.

They will also help bridge the gaps among disparate, stove-piped systems to meet

the needs of our sponsors. Software Engineering much of the research in software

engineering today, and for the foreseeable future, is rooted in one fundamental

characteristic of software systems—increasing complexity. As our ability to build

software and software systems improves, we build ever-larger and more complex

systems. As complexity increases, a host of other issues arise. Systems must

become more distributed because a single computer can no longer contain them.

They also become more error-prone, and the errors become harder to find and fix.

The teams needed to develop software systems also become larger, with the

resultant increase in communication complexity and the requirement for more

precision in their definition.

Related to this problem is the one of defining the systems’ behaviors in the first

place, as they also become increasingly difficult for users to visualize and describe

all aspects of those behaviors in advance. Finally, as the systems become ever

larger and less deterministic, it becomes impossible to fully define and test all of

their behaviors. Instead, systems must be developed that remain reliable and

robust, even when handling conditions outside of design specifications. in

addressing the fundamental issue of system complexity, ApL envisions applying

aspects of three recent foci in software engineering research to internally devel-

oped systems.

The first aspect is modeling to enable system developers to work with higher levels

of abstraction, both in system specification and systems operations, using standards

Page 8 of 8

for describing modeling languages such as the meta-object Facility (moF) as well

as run- time behavior via the model-integrated computing (mic) effort.

The second aspect of software engineering that ApL will apply to its systems is

new software development methodologies that are evolving as quickly as systems

are. The third aspect that ApL will pursue is software architectures that exploit

technologies such as the soA and publish-subscribe infrastructures, and

architecture frame- works such as J2ee, the DoD Architecture Framework

(DoDAF), and microsoft’s.net.

These approaches will enable system developers to work at ever-higher levels of

abstraction, managing the system development at the highest level—the

architecture—as well as soft- ware. Cognitive Engineering As the power of

software and hardware systems increases and the amount of data with which the

systems interact escalates, the requirement for more complex human interaction

with greater volumes of data increases as well. Systems often must support

multiple users with different needs for access to information and distinct system

interaction roles. Unless the engineering of information systems considers user

roles and tasks as a fundamental aspect of their engineering, users may suffer the

consequence of system–user impedance mismatches. Ultimately, users need to

interact with systems at a level of abstraction and ease to simplify their tasks as

well as increase the understanding of the goals they are accomplishing.

SUMMARY
The engineering of information systems will increasingly rely on integrating a

wide range of technologies and processes that enable users and systems to access,

understand, and operate on large amounts of information. Information must be

presented at the right level of abstraction at the right time to allow users to make

informed and timely decisions. Thus, information system technologies will be

engineered to integrate and process information across the DikW continuum so that

information is available at abstraction levels appropriate to user tasks and roles.

